Learning of Behavior Trees for Autonomous Agents
نویسندگان
چکیده
Definition of an accurate system model for Automated Planner (AP) is often impractical, especially for real-world problems. Conversely, off-the-shelf planners fail to scale up and are domain dependent. These drawbacks are inherited from conventional transition systems such as Finite State Machines (FSMs) that describes the action-plan execution generated by the AP. On the other hand, Behavior Trees (BTs) represent a valid alternative to FSMs presenting many advantages in terms of modularity, reactiveness, scalability and domain-independence. In this paper, we propose a model-free AP framework using Genetic Programming (GP) to derive an optimal BT for an autonomous agent to achieve a given goal in unknown (but fully observable) environments. We illustrate the proposed framework using experiments conducted with an open source benchmark Mario AI for automated generation of BTs that can play the game character Mario to complete a certain level at various levels of difficulty to include enemies and obstacles.
منابع مشابه
Iranian EFL Learners’ Autonomous Behavior in Out-of-class Contexts: A Call for Understanding Learners’ Personalized Approaches to Learning
The salient, and often ignored, role that out-of-class learning plays in second/foreign language (L2) learners’ development is overshadowed by classroom research. The main aim of this study is to problematize the role of out-of-class learning in the specific English-as-Foreign-Language (EFL) context of Iran by examination of the ways in which four learners attempted to revamp their English lang...
متن کاملA General Dynamic Function for the Basal Area of Individual Trees Derived from a Production Theoretically Motivated Autonomous Differential Equation
The management of forests may be motivated from production economic and environmental perspectives. The dynamically changing properties of trees affect environmental objectives and values of trees as raw material in the construction sector and in the energy sector. In order to optimize the management of forests, it is necessary to have access to reliable functions that predict how trees develop...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملA Shift into Autonomous Education
Fostering autonomous learning has become one of the key concerns of course designers and curriculum planners in the last 20 years which has been validated on both ideological and psychological grounds. However, estimating learners’ readiness to accept autonomous education is an important step prior to moving toward autonomous education. Thus, the current research investigated the patterns of au...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملEvolving Autonomous Agent Controllers as Analytical Mathematical Models
A novel Artificial Life paradigm is proposed where autonomous agents are controlled via geneticallyencoded Evolvable Mathematical Models (EMMs). Agent/environment inputs are mapped to agent outputs via equation trees which are evolved using Genetic Programming. Equations use only the four basic mathematical operators: addition, subtraction, multiplication and division. Experiments on the discre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.05811 شماره
صفحات -
تاریخ انتشار 2015